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Neutron star glitches



Glitches

I ∆Ω
Ω ∼ 10−11 − 10−5

I 315 glitches in 105 pulsars Espinoza et. al. (2011)

I A wide diversity in glitch behavior

I The bigger glitches are more regular and one hopes that there
is a simple dynamical explanation for a class of glitches



Glitches from pinned vortices

I Neutron star glitches can result from transfer of angular
momentum from the neutron superfluid to the rigid crust
Anderson and Itoh (1975)

I Superfluid angular frequency proportional to the vortex density

I For the superfluid to slow down, the vortices need to dilute.
Pinning sites may prevent free motion of vortices

I Stress develops till the angular velocity difference reaches a
critical point, when a macroscopic number of vortices unpin
and dilute, and transfer angular momentum to the crust



Unbound neutrons in the inner crust

Unbound neu-
trons in the in-
ner crust are
superfluid. The
nuclei form a
lattice.



Neutron Superfluidity

I Neutrons form Cooper pairs and condense, ∆ ∝ 〈ψψ〉
I A BCS (Bardeen-Cooper-Schrieffer) or fermionic superfluid

I Interactions between neutrons specified by a scattering length
a ∼ −18.6fm and effective range re ∼ 2.2fm

I To be compared to inter-particle separation
(n)−1/3 = (3π2)1/3/kF

I At low densities (kF ∼ 10−1fm−1), |kFa| & 1, kF re . 1

I Ground state properties calculated using ab-initio techniques
Gezerlis, Carlson (2007); Gandolfi, Carlson, Reddy (2011)



Relation with the unitary Fermi gas

I Unitary Fermi gas, kFa→∞, kF re → 0, has a scale symmetry

I P = c0m3/2µ5/2 where c0 is related to the Bertsch parameter

ξ, c0 = 25/2

15π2ξ3/2 . Equivalently E = ξEFG where

EFG =
3
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n
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F

2m
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~2

2m
(3π2)2/3(n)5/3

I Monte-Carlo simulations used to calculate ξ reliably



Vortex configurations

I ∆ = |∆|e iφ
I Classic Onsager vortices in superfluids. The phase φ of the

condensate winds around by κ = 2π.

I |∆| = 0 at the core

I Density of the fermions depleted near the core

I The gradient of the phase gives the superfluid velocity, and
the velocity field curls around the vortex



The goal

I Solving space-time varying configurations using ab-initio
techniques is difficult

I Therefore use a simpler model that captures the physics

I I will describe a bosonic, extended Thomas Fermi (ETF)
model

I See its applications and limitations



A simpler unitary bosonic theory

I We try a unitary bosonic model (Gross-Pitaevskii like
equations) of time evolution

I L = Ψ∗i∂tΨ−
[
Ψ∗(−~2∇2

4mF
+ 2(V (r)− µ))Ψ +

ξ 3
5

~2

2mF
(3π2)2/3(2Ψ∗Ψ)5/3

]
I A Thomas-Fermi model “extended” by kinetic terms

I One can think of Ψ as a field describing a boson composed of
Cooper pairs. ρF = 2Ψ∗Ψ

I Correct cs =
√
ξ3kF

m =
√
ξ3vF



A simpler unitary bosonic theory

I Gives a good description of the collision of two fermionic
clouds (Salasnich, Toigo PRA (2008))

I Gives a resonable agreement for the energy dependence on
particle number with the fermionic theory for large particle
numbers in a harmonic trap (Forbes (2012))

I The interaction term is fixed by scale invariance: the same as
the expression for the fermionic system

I V (r) can be seen as the effective potential for the pairing field
(Broglia et. al, Pizzocherro et. al.)



Structure of a vortex



Vortex motion

I The well known Magnus force governs the dynamics



Vortex Motion

I Vortex motion can be described by the equation

M~̈r − ~f qp = ρs~κ× (~̇rv − ~̇vs) + ~Fv (1)

I ~rv is the position on the vortex, ~Fv that is the key ingredient
in the dynamics

I In our case time derivatives are small and the left hand side
can be neglected

I Our main result is an efficient method to calculate ~Fv

I The usual method is to calculate Fv = (Ev − Enov )/rv .
Questions: Should the number of neutrons be kept fixed?
Furthermore, it is not clear whether the “force” calculated this
way describes vortex dynamics

I If the nucleus-vortex interaction is approximated by a
potential, one can do a very well defined calculation by using
~F = −〈∇V 〉
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Vortex motion
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Comments on previous results

I There are two current sets of results:

I (Broglia et. al.) find that there is no pinning — the vortex is
repelled from the nucleus. This is surprising because pairing
inside the nucleus is weaker than in the bulk superfluid.
Perhaps because they compare the energies of system with
and without a vortex with the same total particle number

I Compared to (Pizzocherro et. al.) our maximum force is a
factor of 50 larger at the same density. Partially because of a
stronger potential V , partially because we have not yet done
the 3−d simulation, but (I think) mainly because we are not
just looking at the end point configuration

I Systematics associated with using V from different models,
and behaviour as a function of density not yet analyzed



Validating the model



Superfluid Local Density Approximation (SLDA)

I Kohn-Sham theorem assures that there exists a functional of
the density satisfying dE/dn = −µ

I The form of the functional highly constrained due to
conformal symmetry

I E [n, ν] = α~2τ2
r

2m −
~2γ

mn1/3 ν
†
r νr + βEFG

I n = 〈ψ†ψ〉 and ν = 〈ψψ〉
I The values of α = 1, β = −0.3942, γ = −13.196 set to

reproduce results of ab-initio Monte-Carlo simulations
[∆/eF = 0.502, ξ = 0.41] Forbes, Bulgac PRL (2008)

I Larger ξ than the current best calculated and measured values
Forbes, Gandolfi, Gezerlis PRL (2011)

I The SLDA has been successfully used to study the creation of
vortices in unitary Fermi gases Bulgac et. al. Science (2011)



Linear response: small fluctuations

I For time independent fluctuations of the potential
V (r) = δ cos(qx), χ(q, 0) = δn(q)/δ
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Response of the unitary gas
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Low energy constants

I These results can be used to extract the coefficients of the
low energy theory. (Forbes, RS) in preparation

I Son, Wingate Ann. Phys. (2002)

I ω(q) = csq[1 + cω
24ξ ( q

kF
)2]

I χ(q, 0) = − mkF
~2π2ξ

[1− cχ
12ξ ( q

kF
)2]

I For the ETF cω = cχ = 9/4

I For the SLDA cχ = 7/3, and is independent of β and γ.
cω ' (−0.255, 0.055) as we vary ξ from the 0.41 to 0.37



Comparing SLDA evolution with GPE evolution

I vstir = 0.1vF
I SLDA:Movie

I (Bulgac et. al. Science (2011)) and
(http://www.phys.washington.edu/groups/qmbnt/UFG/)

I GPE:Movie

I (Forbes, RS)



Summary of the comparison

I No fitting parameter. The ξ, the trapping and stirring
potentials are precisely the same

I ETF gives roughly the correct of the number of vortices with
the stirring velocity

I This is because this is governed essentially by hydrodynamics
and long distance physics

I The details of the dynamics are different. The vortex is
created later in the ETF

I But the most striking difference is that the ETF is more noisy



Comparing resolutions
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Spectra
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Spectra
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More realistic modelling of dynamics?

I Perhaps a model with decay or smoothing

I 1
kF a

and kF re corrections – easy to include

I The fermionic problem using SLDA – a step up, but has been
done for the unitary gas. A nice feature is that V is
self-consistently determined

I Realistic nuclear SLDA functionals – easy to include

I Three dimensional simulation

I The combined lattice and superfluid problem – hard even at
the density functional level, let alone at the ab-initio level.
May affect the number of unbound neutrons in the inner crust
(Chamel)



Summary

I The existence of neutron superfluidity affects dynamical
properties of neutron stars and can affect observables

I The unitary Fermi gas is a useful model system of superfluid
neutrons in the inner crust

I It would be “cool” if we can definitively show from
observations that the inner crusts of neutron stars contain
superfluid neutrons, and having a realistic model for the
dyanamics will be useful for this purpose
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Number of vortices versus vstir

vstir/vF SLDA (322) ETF (642) ETF (322)

0.1 1 0 0
0.11 - 1 1

0.197 - 3 2
0.2 3 4 3

0.242 - 5 2
0.25 5 6 2
0.3 6 5 (noise)

0.312 - 6 (noise)
0.35 7 7 (noise)
0.40 9 9 (noise)


